CELL 2-REPRESENTATIONS & CATEGORIFICATION AT PRIME ROOTS OF UNITY arXiv:1708.02641

ROBERT LAUGWITZ* (Rutgers University, Department of Mathematics) VANESSA MIEMIETZ (University of East Anglia, School of Mathematics)

Abstract

For q a root of unity of prime order p, Khovanov–Qi, Elias–Qi categorified small quantum groups of type A_1 using categories enriched with a *p*-differential ∂ .

We extend the theory of cell 2-representations of Mazorchuk–Miemietz to a *p*-dg enriched setup, and build on some of their results. As an application, we consider cyclotomic quotients of categorified small quantum groups.

BACKGROUND

Crane–Frenkel vision (1994): Replace small quantum groups $u_q(\mathfrak{g})$ by categories, study their categorical representations.

Prime Root of Unity Categorification

Assume q is a primitive p-th root of unity, p a prime.

- $\rightarrow u_q(\mathfrak{g})$ is an \mathbb{O}_n -algebra for \mathbb{O}_n the cyclotomic integers.
- \rightarrow Khovanov (2005) suggested to use the stable category of $\mathbb{k}[\partial]/(\partial^p)$ -modules to categorify \mathbb{O}_p and modules over it.
- \rightarrow Hopfological Algebra studies categories enriched in *H*-mod, *H* a Hopf algebra, to categorify interesting algebras.
- \rightarrow This led to recent categorifications, at prime root of unity, of $\dot{u}_q(\mathfrak{sl}_2^+)$ [Khovanov–Qi], $\dot{u}_q(\mathfrak{sl}_2)$, $U_q(\mathfrak{sl}_2)$ [Elias–Qi].

2-Representation Theory

Categorified representations: 2-representations appear in the literature in Rouquier's work on 2-Kac Moody algebras (2004, 2008) and elsewhere. A systematic study started in a series of papers by Mazorchuk–Miemietz (beginning in 2010).

Think of *representation* of an algebra as a k-linear functor $A \longrightarrow$ $\operatorname{Vect}_{\Bbbk}$. Similarly, a **2-representation** is a strict \Bbbk -linear 2-functor $M: \mathscr{C} \longrightarrow \mathfrak{R}_{\Bbbk}$. The target has objects which are categories equivalent to A-proj for A finite-dimensional, 1-morphisms are equivalent to functors of tensoring with projective bimodules, and 2-morphisms are morphisms of bimodules.

Cell 2-representations give a way to construct *simple transitive* 2-representations. These act transitivity on objects, with no nontrivial ideals in M stable under the action.

Construction: Define a partial order on 1-morphisms:

 $F \leq_L G \iff G$ is a direct summand of $H \circ F$, for some H

- \rightarrow Equivalence classes $\mathcal{L} \subset \mathscr{C}(i, -)$ are called left cells of \mathscr{C} .
- \rightarrow Principal 2-representations \mathbf{P}_{i} : $j \mapsto \mathscr{C}(i, j)$, $G \mapsto G \circ (-)$. \rightarrow Restict to the 2-subrepresentation $\mathbf{R}_{\mathcal{L}} \leq \mathbf{P}_{i}$ generated by 1
 - morphism in the cell \mathcal{L} .

 \rightarrow Cell 2-representation: the maximal quotient $C_{\mathcal{L}} := R_{\mathcal{L}}/I$ not annihilating identities in \mathcal{L} .

*p***-DG 2-REPRESENTATIONS**

Definitions and Results

Technical restriction: All *p*-dg categories $\mathscr{C}(i, j)$, and $\mathbf{M}(i)$, are *strongly finitary*. This means:

- \rightarrow The underlying k-linear category is finitary and Karoubian.
- \rightarrow All subquotient idempotents (not necessary annihilated by ∂) split in the enriched category.

 \rightarrow All objects are filtered by k-indecomposables and cofibrant (cf. *fantastic filtration* of Elias–Qi).

A *p*-dg 2-representation is a *p*-dg 2-functor $\mathscr{C} \longrightarrow \mathfrak{M}_p$, with target \mathfrak{M}_p consisting of:

- \rightarrow Objects that are small *p*-dg categories $\overline{\mathcal{A}}$, a combinatorial model for compact semi-free modules, generalizing *one-sided* twisted complexes of Bondal–Kapranov.
- \rightarrow 1-Morphisms are *p*-dg functors.
- \rightarrow 2-Morphisms are natural transformations (enriched).

We can define:

 \rightarrow An analogue of principal 2-representations P_i , where $\mathbf{P}_{i}(j) = \mathscr{C}(i, j).$

 \rightarrow An analogue of cell 2-representations $C_{\mathcal{L}}$.

*robert.laugwitz@rutgers.edu

Theorem 1. representations.

The underlying additive 2-representations are inflations of the cell 2-representations by a local algebra (Mazorchuk–Miemietz).

Theorem 2.

A p-dg 2-representation $\mathbf{M}: \mathscr{C} \to \mathfrak{M}_p$ induces a triangulated 2-representation KM of the triangulated 2-category $\mathscr{K}(\mathscr{C})$ obtained by taking stable categories of $\mathscr{C}(i, j)$.

Class of examples.

The p-dg 2-categories $\mathscr{C}_{\mathcal{A}}$, where $\mathcal{A} = \prod_{i=1}^{n} \mathcal{A}_{i}$ is a list of strongly finitary *p*-dg categories.

- \rightarrow Objects i correspond to $\overline{\mathcal{A}}_i$.

Theorem 3.

Applications to Categorified Quantum Groups

Corollary.

Theorem 4. Every endofunctor of the categorified simple representation \mathbf{L}_{λ} of \mathscr{U}^{λ} is p-dg equivalent to an extension of the identity functor.

The p-dg cell 2-representations are simple transitive p-dg 2-

 \rightarrow 1-Morphisms are generated by tensoring with cofibrant (and k-indecomposable) \mathcal{A}_i - \mathcal{A}_j -bimodules.

 \rightarrow 2-Morphisms are morphisms of bimodules.

For \mathcal{A} strongly finitary assume $\partial(\operatorname{rad}\mathcal{A}) \subset \operatorname{rad}\mathcal{A}$. Then for $\mathscr{C}_{\mathcal{A}}$, the cell 2-representation of the unique non-identity cell is equivalent to the natural (defining) 2-representation.

Let $0 \leq \lambda \leq p-1$. Denote by $\mathbf{L}_{\lambda} \colon \mathscr{U} \longrightarrow \mathfrak{R}_{\mathbb{k}}$ the categorification of the simple $\dot{u}_q(\mathfrak{sl}_2)$ -module $L(\lambda)$ of Elias–Qi. Then $\mathscr{U}^{\lambda} := \mathscr{U} / \ker \mathbf{L}_{\lambda}$ is strongly finitary. Fix a lowest left cell \mathcal{L} .

The p-dg 2-categories $\mathscr{U}^{\lambda}_{\mathcal{L}}$ and $\mathscr{C}_{\mathcal{A}}$ are p-dg biequivalent, where A is generated by regular p-dg bimodules over nil-Hecke algebras. The idempotent completion $\mathscr{U}^{\lambda}_{\mathcal{L}}$ is biequivalent to $\mathscr{C}_{\mathcal{B}}$, where B is the list of coinvariant algebras.

The 2-cell representation $\mathbf{C}_{\mathcal{L}}$ of $\widehat{\mathscr{U}^{\lambda}}$ is given by the natural action on coinvariant algebras and also categorifies $L(\lambda)$.